Презентация на тему "формула бернулли". Повторение испытаний. Схема бернулли Схемы повторных испытаний бернулли исследовательская работа

МОУ « Рудногорская средняя общеобразовательная школа»

Разработка урока по теории вероятностей

в 10 классе

по теме

« Независимые повторные испытания.

Теорема Бернулли »

Учитель математики

МОУ «Рудногорская сош»

Чибышева И.А.

«…Случайность главным образом

зависит от нашего знания…»

Якоб Бернулли

Тема « »

Класс:10

Цели урока:

Обучающие:

Развивающие:

Воспитательные:

Задачи :

Тип урока: комбинированный.

Методы обучения: беседа, письменные упражнения.

Оборудование: компьютер, мультимедиапроектор. презентация, раздаточный материал

План урока:

    Организационный этап -2 мин

    Актуализация опорных знаний – 3 мин

    Этап изучения нового материала – 10 мин

    Этап обобщения и систематизации знаний -20 мин

    Домашняя работа -3 мин

    Подведение итога урока- 2 мин

    Рефлексия -5 мин.

ХОД УРОКА

I. Организационный момент.

II. Актуализация знаний

Вспомним основные понятия и формулы комбинаторики.

1. Что называется факториалом числа n? (Это произведение первых натуральных n чисел от 1 до n.)
2. Сколькими способами можно расставить4 различные книги на полке? (3! = 3 · 2 · 1. Это число перестановок из 3 элементов.)
3. Сколькими способами можно распределить I, II, III места между 7 участниками соревнования? (7 · 6 · 5 = 210. Это число размещений из 7 элементов по 3.)
4. Сколькими способами можно составить график дежурства 3 учащихся из 5? (это число сочетаний из 5 элементов по 3 и равно 10).

5. Что мы называем вероятностью случайного события?

6. Сформулируйте классическое определение вероятности.

III. Изучение нового материала

При практическом применении теории вероятностей и математической статистики часто приходится встречаться с задачами, в которых один и тот же опыт повторяется неоднократно. В результате каждого опыта может появиться или не появиться событие A, причем нас интересует не результат каждого опыта, а общее число появлений события A в серии опытов. Например, совсем недавно в Корее прошел чемпионат мира по биатлону. Спортсмены производили ряд выстрелов по мишеням, и нас, как правило, интересовал не результат каждого отдельного выстрела, а общее число попаданий. При этом результаты предыдущих опытов никак не сказывались на последующих. Такая стандартная схема часто встречается и в самой теории вероятностей. Она называется схемой независимых испытаний или схемой Бернулли . Швейцарский математик XVII в. Якоб Бернулли объединил примеры и вопросы такого типа в единую вероятностную задачу-схему (работа "Искусство предположений" опубликована в 1713 году).

Историческая справка (сообщение о жизни ученого к уроку готовит один из обучающихся):

«Якоб Бернулли (27.12.1654, Базель, – 16.8.1705, там же) – профессор математики Базельского университета (1687) был выходцем из Голландии….. «

Проверка домашнего задания:
1 группа: Вам дома надо было вычислить вероятность выпадения 1 на игральном кубике.
2 группа: Вам дома надо было вычислить вероятность выпадения «орла» при бросании монеты. (Ученики называют результаты, делается вывод о причинах различных ответов, и вывод о том, что чем больше испытаний, тем лучше можно увидеть, к чему стремится результат)
Говоря о частоте и вероятности некоторого случайного события А, мы подразумеваем наличие определенных условий, которые можно неоднократно воспроизводить. Этот комплекс условий мы называем случайным опытом или случайным экспериментом. Отметим, что результат одного опыта никак не зависит от предыдущего. Несколько опытов называются независимыми , если вероятность исхода каждого из опытов не зависит от того, какие исходы имели другие опыты. Например, несколько последовательных бросаний монеты – это независимые опыты. Несколько последовательных выниманий шаров из мешка – независимые опыты при условии, что вынутый шар каждый раз возвращается в мешок.. В противном случае – это зависимые опыты. Якоб Бернулли объединил примеры и вопросы такого типа в единую вероятностную схему.

Схема Бернулли.

Рассматривают независимые повторения одного и того же испытания с двумя возможными исходами, которые условно называют «успех» и «неудача». Требуется найти вероятность того, что при n таких повторениях произойдет ровно к «успехов».

Учителю следует подчеркнуть еще раз три условия, которым должна удовлетворять схема Бернулли:

1) у каждого испытания должно быть два исхода, называемых «успех» и «неудача»;

2) в каждом опыте вероятность события А должна быть неизменной;

3) результаты опытов должны быть независимыми.

1 V . Закрепление.

1. Устная работа (возможно организовать групповую работу) . Ответы обсуждаются в группах и один представитель озвучивает.

Объясните, почему следующие вопросы укладываются в схему Бернулли. Укажите, в чем состоит «успех» и чему равны n и k .

а) Какова вероятность того, что при 123 бросаниях монеты «решка» выпадет ровно 45 раз?

б) В черном ящике находятся 10 белых, 3 красных и 7 синих шаров. Шары извлекаются, записывается их цвет и возвращаются обратно. Какова вероятность того, что все из 20 извлеченных шаров будут синими?
в) Какова вероятность того, что при ста бросаниях монеты «орел» появится 73 раза?
г) Двадцать раз подряд бросили пару игральных кубиков. Какова вероятность того, что сумма очков ни разу не была равна десяти?
д) Из колоды в 36 карт вытащили три карты, записали результат и возвратили их в колоду, затем карты перемешали. Так повторялось 4 раза. Какова вероятность того, что каждый раз среди вытащенных карт была дама пик?

УЧИТЕЛЬ: Для получения численных значений в таких задачах необходимо заранее знать вероятность «успехов» и «неудач». Обозначив вероятность «успеха» p, а вероятность «неудач» q, где q = 1- p, Бернулли доказал замечательную теорему

2. Самостоятельная работа (возможно организовать групповую работу). Учащимся предлагается 7 задач на решение. В скобках указано количество баллов за задачу. Ребята обсуждают решение в группах. Установка: оценка «5»-17-22 балла, «4»-12- 16 баллов, «3»-6-11 баллов.

1). Какова вероятность того. что при десяти бросках игральной кости 3 очка выпадут ровно 2 раза? (2 балла)

2). Какова вероятность того, что при 9 бросаниях монеты «орел» выпадет ровно 4 раза?(2 балла)

3). Остап Бендер играет 8 партий против членов шахматного клуба. Остап играет плохо, поэтому вероятность выигрыша в каждой партии равна 0,01. Найдите вероятность того, что Остап выиграет хотя бы одну партию. (3 балла)

4). Вероятность попадания в мишень одним выстрелом равна 0,125. Какова вероятность того, что из 12 выстрелов не будет ни одного попадания? (3 балла)

5). В части А ЕГЭ по математике в 2005 году было 10 заданий с выбором ответа. К каждому из них предлагалось 4 варианта ответов, из которых только один верный. Для получения положительной отметки на экзамене необходимо ответить минимум на 6 заданий. Какова вероятность того, что нерадивый ученик сдаст экзамен? (4 балла)

6). Бросаем игральную кость. Какова вероятность того, что бросив кость 8 раз, мы выбросим шестерку не менее 4, но не более 6 раз? (4 балла)

7). За один выстрел стрелок поражает мишень с вероятностью 0,1. Найти вероятность того, что при пяти выстрелах он хотя бы раз попадет в мишень. (4 балла)

ОТВЕТЫ: 1) 0,29; 2) 0,246; 3)0,077; 4)0,2 5) 0,016; 6) 0,034; 7) 0,4095;

Если есть время, то работу можно обсудить, если нет, то собрать тетради на проверку.

V. Домашняя работа:

1). Вероятность события А равна 0,3. Какова вероятность того, что в серии из 6 испытаний событие А наступит хотя бы один раз? (4 балла)

2). Саше задали 10 одинаковых по трудности задач. Вероятность того, что он решит задачу равна 0,75. Найдите вероятность того, что Саша решит: а) все задачи;

б) не менее 8 задач; в) не менее 6 задач.

3. Серию испытаний Бернулли проводят дважды. В первый раз вероятность успеха равна ½, во второй раз вероятность успеха 1/3. В каком случае ожидаемый разброс величины S больше, если S число наступивших успехов?

ОТВЕТЫ: 1). 0,882 ; 2) а) 0,056; б) 0,526; в) 0,922.

Индивидуально: презентация материала по теме «Закон больших чисел», доклад на тему «Семейство Бернулли».

V1. Подведение итогов.

Какие ключевые слова урока можно выделить?Объясните их значение.

Какой ключевой факт сегодня изучен?

Что общего и в чем отличие статистики и вероятности?

V11. Рефлексия. На этапе рефлексии учащимся предлагается составить синквейн и в поэтической форме выразить свое отношение к изученном материалу.

Справка: СИНКВЕЙН – приём технологии развития критического мышления, на стадии рефлексии.

Это короткое литературное произведение, характеризующее предмет (тему), состоящее из пяти строк, которое пишется по определённому плану. Слово «синквейн» происходит от французского слова «пять».

ПРАВИЛА НАПИСАНИЯ СИНКВЕЙНА

1 строчка – одно слово – название стихотворения, тема, обычно существительное.

2 строчка – два слова (прилагательные или причастия). Описание темы, слова можно соединять союзами и предлогами.

3 строчка – три слова (глаголы). Действия, относящиеся к теме.

4 строчка – четыре слова – предложение. Фраза, которая показывает отношение автора к теме в 1-ой строчке.

5 строчка – одно слово – ассоциация, синоним, который повторяет суть темы в 1-ой строчке, обычно существительное.

Литература

    В.А.Булычев, Е.А.Бунимович. Изучение теории вероятностей и статистики в школьном курсе математики. “Математика в школе”. № 4. 2003 г. стр. 59. Виленкин Н. Я. Комбинаторика. – М.: Наука, 1969.

    В.Н. Студинецкая и др. «В мире закономерных случайностей». Волгоград:Учитель, 2007.

    Гмурман В. Е. Руководство по решению задач по теории вероятностей и математической статистике. – М.: Высшая школа, 1975.

    Гмурман В. Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 1977.

    Гнеденко Б. В. Курс теории вероятностей. – М.: Наука, 1988.

    Эл. учебник Рефераты и сочинения

Самоанализ урока

Курс: основы теории вероятностей и математической статистики.

Класс: 10-й, физико-математическое направление.

Тема урока: Независимые повторные испытания. Теорема Бернулли

Цели урока:

Обучающие:

Ознакомление учащихся со схемой Бернулли и отработка ее применения при решении задач.

Развивающие:

Формирование у учащихся единой научной картины мира и элементов научного мировоззрения путем исследования межпредметных связей теории вероятностей и различных наук;

Формирование вероятностно-статистического мышление учащихся;

Воспитательные:

Развитие самостоятельности и навыков самоконтроля.

Мотивация учащихся к изучению тем теории вероятностей.

Задачи :

  • закрепить знания и умения решать комбинаторные задачи;

    формировать навыки применения схемы Бернулли при решении задач,

    формировать навыки решения задач по формуле Бернулли,

    развивать основные мыслительные операции учащихся: умение сравнивать, анализировать.

Тип урока: комбинированный.

Данный материал имеет практическое применение, так как позволяет решать задачи, в которых один и тот же опыт повторяется неоднократно. В результате каждого опыта может появиться или не появиться событие A, причем нас интересует не результат каждого опыта, а общее число появлений события A в серии опытов. На данном уроке ребята узнали формулу для решения таких задач, научились определять задачи, которые подходят под схему Бернулли и решаются по его теореме. Рационально распределено время на всех этапах урока. Темп урока соответствовал уровню развития и подготовленности учащихся.

Урок был задуман мною как диалог между учителем и учащимися, так как класс достаточно сильный. Урок способствовал формированию основных мировоззренческих идей, вероятностно-статистического мышления, умения выделять межпредметные связи. Ребята работали в группах, что позволяет развивать их познавательную и коммуникативную компетентность. Для того, чтобы в группах работали все, согласно своим возможностям и способностям, чтобы не терялся интерес к преподаваемой дисциплине, задания предложены разноуровневого характера Учащиеся на уроке проявляли активность, самостоятельно приходили к выводу. Содержание урока способствовало развитию интереса к учению, о чем свидетельствует рефлексивный этап урока. Презентация помогла сделать урок более интересным, сэкономить время для конспектирования нового и систематизации материала.

Пример синквейна:

1. Теорема Бернулли
Новая, интересная.
Познакомились, поняли, заинтересовались.
Позволяет находить вероятность

В реальности.

2. О, испытания,

Независимые повторные

Разберем, поймем и вычислим

И поможет нам в этом, естественно,

Теорема Бернулли

Цели, поставленные на уроке, достигнуты.

Проводится серия независимых испытаний, в
каждом из которых возможно 2 исхода,
которые условно назовем Успех и Неудача.
Например, студент сдает 4 экзамена, в каждом
из которых возможно 2 исхода Успех: студент
сдал экзамен и Неудача: не сдал.

Вероятность Успеха в каждом испытании равна
p. Вероятность Неудачи равна q=1-p.
Требуется найти вероятность того, что в серии
из n испытаний успех наступит m раз
Pn(m)

Bm Ó Ó ... Ó Í ... Í
Í Ó ... Ó Í ... Í ...
Í Í ... Í Ó ... Ó
В каждом случае Успех происходит m раз, а
Неудача (n-m) раз.
Число
всех
комбинаций
равно
числу
способов из n испытаний выбрать те m, в
которых был Успех, т.е. C m
n

Вероятность каждой такой комбинации по
теореме
об
умножении
вероятностей
составит Pmqn-m.
Так как эти комбинации несовместны, то
искомая вероятность события Bm будет
Pn (m) p q
m
n m
... p q
m
n m
âñåãî C ñëàãàåì û õ C p q
m
n
m
n
m
n m

Pn (m) C p q
m
n
m
n m

Известно, если монета упадет орлом, студент
идет в кино, если монета упадет решкой

студентов. Какова вероятность, что
1) трое из них окажутся на лекции
2) на лекции окажется не меньше 3 студентов
2) хотя бы один из студентов попадет на лекцию?

1) В данной задаче проводится серия из n=5
независимых испытаний. Назовем Успехом
поход на лекцию (выпадение решки) и
Неудачей – поход в кино (выпадение герба).
p=q=1/2.
По формуле Бернулли находим вероятность того,
что при 5 бросаниях монеты трижды случится
успех:
3
2
1 1
P5 (3) C
2 2
5! 1 1
1
10
0,3125
3!2! 8 4
32
3
5

Чтобы найти вероятность того, что при 5 бросаниях
хотя бы один раз монета выпадет решкой,
перейдем к вероятности противоположного
события - монета все 5 раз выпадет гербом:
Р5 (0).
Тогда искомая вероятность будет: Р=1- Р5(0).
По формуле Бернулли:
0
5
1 1
P5 (0) C
2 2
0
5
5
1
0,03125
2

Тогда вероятность искомого события составит
P 1 0.03125 0,96875


Бернулли
студент идет
в кино, если монета упадет решкой – студент идет на
лекцию. Монету бросило 5 студентов. Каково наиболее
вероятное число студентов, идущих на лекцию?
Вероятность
выигрыша по 1 билету равна 0,2. Каково наиболее
вероятное число выигравших билетов?

Наивероятнейшее число успехов в схеме
Бернулли

np q k np p

Наивероятнейшее число успехов в схеме
Бернулли
Формула для наиболее вероятного числа успехов
np q k np p
Если np-q– целое число, то в этом интервале лежит 2
целых числа. Оба равновероятны.
Если np-q – нецелое число, то в этом интервале лежит 1
целое число

Наивероятнейшее число успехов в схеме
Бернулли
Пример Известно, если монета упадет орлом,

– студент идет на лекцию. Монету бросило 5

студентов, идущих на лекцию?
np q k np p
n 5
1
p q
2

Наивероятнейшее число успехов в схеме
Бернулли
Пример Известно, если монета упадет орлом,
студент идет в кино, если монета упадет решкой
– студент идет на лекцию. Монету бросило 5
студентов. Каково наиболее вероятное число
студентов, идущих на лекцию?
np q k np p
n 5
1
p q
2
1 1
np q 5 2
2 2
1 1
np p 5 3
2 2

Наивероятнейшее число успехов в схеме
Бернулли
Пример Известно, если монета упадет орлом,
студент идет в кино, если монета упадет решкой
– студент идет на лекцию. Монету бросило 5
студентов. Каково наиболее вероятное число
студентов, идущих на лекцию?
np q k np p
n 5
1
p q
2
1 1
np q 5 2
2 2
1 1
np p 5 3
2 2
2 k 3 k 2, k 3

Наивероятнейшее число успехов в схеме
Бернулли
Пример Известно, если монета упадет орлом,
студент идет в кино, если монета упадет решкой
– студент идет на лекцию. Монету бросило 5
студентов. Каково наиболее вероятное число
студентов, идущих на лекцию?
2
3
3
2
5
1 1
1 10 5
P5 (2) C52 10
32 16
2 2
2
5
1 1
1 10 5
P5 (3) C53 10
32 16
2 2
2

Наивероятнейшее число успехов в схеме
Бернулли
Пример Известно, если монета упадет орлом,
студент идет в кино, если монета упадет решкой
– студент идет на лекцию. Монету бросило 5
студентов. Каково наиболее вероятное число
студентов, идущих на лекцию?
вероятность, Pn(k)
Вероятности числа студентов, посетивших
лекцию
0,35
0,3
0,25
0,2
0,15
0,1
0,05
0
0
1
2
3
число студентов, k
4
5

Наивероятнейшее число успехов в схеме
Бернулли
Пример Куплено 10 лотерейных билетов.


билетов?
np q k np p
n 10
p 0,2 q 0,8

Наивероятнейшее число успехов в схеме
Бернулли
Пример Куплено 10 лотерейных билетов.
Вероятность выигрыша по 1 билету равна 0,2.
Каково наиболее вероятное число выигравших
билетов?
np q k np p
n 10
p 0,2 q 0,8
np q 10 0,2 0,8 1,2
np p 10 0,2 0,2 2,2

Наивероятнейшее число успехов в схеме
Бернулли
Пример Куплено 10 лотерейных билетов.
Вероятность выигрыша по 1 билету равна 0,2.
Каково наиболее вероятное число выигравших
билетов?
np q k np p
n 10
p 0,2 q 0,8
np q 10 0,2 0,8 1,2
1, 2 k 2, 2
np p 10 0,2 0,2 2,2
k 2

Наивероятнейшее число успехов в схеме
Бернулли
Пример Куплено 10 лотерейных билетов.
Вероятность выигрыша по 1 билету равна 0,2.
Каково наиболее вероятное число выигравших
билетов?
P10 (2) C 0, 2 0,8
2
10
2
8
45 0, 04 0,16777216=
=0,301989888

Наивероятнейшее число успехов в схеме
Бернулли
Пример Куплено 10 лотерейных билетов.
Вероятность выигрыша по 1 билету равна 0,2.
Каково наиболее вероятное число выигравших
билетов?
Вероятности числа выигрышных билетов
вероятность, Pn(k)
0,35
0,3
0,25
0,2
0,15
0,1
0,05
0
0
1
2
3
4
5
6
число билетов, k
7
8
9
10

Наивероятнейшее число успехов в схеме
Бернулли


Заключено 10 договоров

выплатить страховую сумму

одному из договоров

чем по трем договорам
г) найти наиболее вероятное число договоров, по
которым придется выплатить страховую сумму

Наивероятнейшее число успехов в схеме
Бернулли
Пример В среднем по 20% договоров страховая
компания выплачивает страховую сумму.
Заключено 10 договоров
а) Найти вероятность того, что по трем придется
выплатить страховую сумму
0,201327

Наивероятнейшее число успехов в схеме
Бернулли
Пример В среднем по 20% договоров страховая
компания выплачивает страховую сумму.
Заключено 10 договоров
б) Страховую сумму не придется выплачивать ни по
одному из договоров
0,107374

Наивероятнейшее число успехов в схеме
Бернулли
Пример В среднем по 20% договоров страховая
компания выплачивает страховую сумму.
Заключено 10 договоров
в) страховую сумму придется выплатить не более,
чем по трем договорам
0,753297

Если n велико, то использование формулы
Pn (m) C p q
m
n
m
n m
затруднительно
Поэтому применяются приближенные формулы

Теорема: Если вероятность p наступления события А
в каждом испытании близка к нулю,
а число независимых испытаний n достаточно велико,
то вероятность Pn(m) того, что в n независимых испытаниях
событие А наступит m раз, приближенно равна:
Pn (m)
m
m!
e
где λ=np
Эта формула называется формулой Пуассона (закон редких событий)

Pn (m)
m
m!
e , np
Обычно приближенную формулу Пуассона применяют,
когда p<0,1, а npq<10.





Пример Пусть известно, что при изготовлении некоторого препарата
брак (количество упаковок, не соответствующих стандарту)
составляет 0,2%. Оценить приближенно вероятность того, что
серди 1000 наугад выбранных упаковок окажутся три упаковки,
не соответствующие стандарту.
Pn (k)
k
k!
P1000 (3) ?
e ,
np

Пример Пусть известно, что при изготовлении некоторого препарата
брак (количество упаковок, не соответствующих стандарту)
составляет 0,2%. Оценить приближенно вероятность того, что
серди 1000 наугад выбранных упаковок окажутся три упаковки,
не соответствующие стандарту.
Pn (k)
k
k!
P1000 (3) ?
e , np
np 1000 0,002 2
3
2 2 8
P1000 (3) e 0,135=0,18
3!
6




связано не более 5 договоров.

Пример В среднем по 1 % договоров страховая компания
выплачивает страховую сумму. Найти вероятность того, что из
100 договоров с наступлением страхового случая будет
связано не более 5 договоров.

Приднестровский государственный университет им.Т.Г.Шевченко

КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ И ЭКОНОМИКО-МАТЕМАТИЧЕСКИХ МЕТОДОВ

КУРСОВАЯ РАБОТА

на тему: "Повторные и независимые испытания. Теорема Бернулли о частоте вероятности"

Выполнил:

студент 303 группы

Рудницкий Александр

Петрович

Проверил: зав. кафедрой

философии

Граневский В.В.

Тирасполь, 2009


1. Введение

2. Формула Бернулли

3. Локальная формула Муавра-Лапласа

4. Формула Пуассона

5. Теорема Бернулли о частоте вероятности

Список литературы

Приложения


1. Введение

При практическом применении теории вероятностей часто приходится встречаться с задачами, в которых одно и то же испытание повторяется неоднократно. В результате каждого испытания может появиться или не появиться некоторое событие А, причем нас не интересует результат каждого отдельного испытания, а общее число появлений события А в результате серии опытов. Например, если производится группа выстрелов по одной и той же цели, нас, как правило, не интересует результат каждого выстрела, а общее число попаданий. В подобных задачах требуется уметь определять вероятность любого заданного числа появлений события в результате серии опытов. Такие задачи и будут рассмотрены. Они решаются весьма просто в случае, когда испытания являются независимыми.

Определение. Испытания называются независимыми, если вероятность того или иного исхода каждого из испытаний не зависит от того, какие исходы имели другие испытания.

Например, несколько бросаний монеты представляют собой независимые испытания.


2. Формула Бернулли

Пусть произведено два испытания(n=2). В результате возможно наступление одного из следующих событий:

Соответствующие вероятности данных событий такие: .

Или - наступление события только в одном испытании.

Вероятность наступления события два раза.

Вероятность наступления события только один раз.

Вероятность наступления события нуль раз.

Пусть теперь n=3. Тогда возможно наступление одного из следующих вариантов событий:

Соответствующие вероятности равны .

Очевидно, что полученные результаты при n=2 и n=3 являются элементами

Теперь допустим, произведено n испытаний. Событие А может наступить n раз, 0 раз, n-1 раз и т.д. Напишем событие, состоящее в наступлении события А m раз


Необходимо найти число испытаний, в которых событие А наступит m раз. Для этого надо найти число комбинаций из n элементов, в которых А повторяется m раз, а n-m раз.

Вероятность наступления события А.

Последняя формула называется формулой Бернулли и представляет собой общий член разложения :

Из формулы (1) видно, что ее удобно использовать, когда число испытаний не слишком велико.

Примеры

№1 . Бросается монета 7 раз. Найти вероятность наступления орла три раза.

Решение.


№2. Каждый день акции корпорации АВС поднимаются в цене или падают в цене на один пункт с вероятностями соответственно 0,75 и 0,25. Найти вероятность того, что акции после шести дней вернутся к своей первоначальной цене. Принять условие, что изменения цены акции вверх и вниз – независимые события.

Решение. Для того, чтобы акции вернулись за 6 дней к своей первоначальной цене, нужно, чтобы за это время они 3 раза поднялись в цене и три раза опустились в цене. Искомая вероятность рассчитывается по формуле Бернулли

№3. Моторы многомоторного самолёта выходят из строя во время полёта независимо один от другого с вероятностью р. Многомоторный самолёт продолжает лететь, если работает не менее половины его моторов. При каких значениях р двухмоторный самолёт надёжней четырёхмоторного самолёта?

Решение. Двухмоторный самолёт терпит аварию, если отказывают оба его мотора. Это происходит с вероятностью р2. Четырёхмоторный самолёт терпит аварию, если выходят из строя все 4 мотора а это происходит с вероятностью р4, либо выходят из строя три мотора из 4-х. Вероятность последнего события вычисляется по формуле Бернулли: . Чтобы двухмоторный самолёт был надёжнее, чем четырёхмоторный, нужно, чтобы выполнялось неравенство

р2<р4+4p3(1–p)

Это неравенство сводится к неравенству (3р–1)(р–1)<0. Второй сомножитель в левой части этого неравенства всегда отрицателен (по условию задачи). Следовательно, величина 3р–1 должна быть положительной, откуда следует, что должно выполняться условие р>1/3. Следует отметить, что если бы вероятность выхода из строя мотора самолёта превышала одну треть, сама идея использования авиации для пассажирских перевозок была бы очень сомнительной.

№4. Бригада из десяти человек идёт обедать. Имеются две одинаковые столовые, и каждый член бригады независимо один от другого идёт обедать в любую из этих столовых. Если в одну из столовых случайно придёт больше посетителей, чем в ней имеется мест, то возникает очередь. Какое наименьшее число мест должно быть в каждой из столовых, чтобы вероятность возникновения очереди была меньше 0,15?

Решение. Решение задачи придётся искать перебором возможных вариантов. Сначала заметим, что если в каждой столовой по 10 мест, то возникновение очереди невозможно. Если в каждой столовой по 9 мест, то очередь возникнет только в случае, если все 10 посетителей попадут в одну столовую. Из условия задачи следует, что каждый член бригады выбирает данную столовую с вероятностью 1/2. Значит, все соберутся в одной столовой с вероятностью 2(1/2)10=1/512. Это число много меньше, чем 0,15, и следует провести расчёт для восьмиместных столовых. Если в каждой столовой по 8 мест, то очередь возникнет, если все члены бригады придут в одну столовую, вероятность этого события уже вычислена, или 9 человек пойдут в одну столовую, а 1 человек выберет другую столовую. Вероятность этого события рассчитывается с помощью формулы Бернулли . Таким образом, если в столовых по 8 мест, то очередь возникает с вероятностью 11/512, что пока ещё меньше, чем 0,15. Пусть теперь в каждой из столовых по 7 мест. Кроме двух рассмотренных вариантов, в данном случае очередь возникнет, если в одну из столовых придёт 8 человек, а в другую 2 человека. Это может произойти с вероятностью . Значит, в этом случае очередь возникает с вероятностью 56/512=0,109375<0,15. Действуя аналогичным образом, вычисляем, что если в каждой столовой 6 мест, то очередь возникает с вероятностью 56/512+120/512=176/512=0,34375. Отсюда получаем, что наименьшее число мест в каждой столовой должно равняться семи.

№5. В урне 20 белых и 10 черных шаров. Вынули 4 шара, причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых.

Решение. Событие А – достали белый шар. Тогда вероятности

По формуле Бернулли требуемая вероятность равна

№6. Определить вероятность того, что в семье, имеющей 5 детей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение. Вероятность рождения девочки

Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки:


Следовательно, искомая вероятность

№7. Среди деталей, обрабатываемых рабочим, бывает в среднем 4% нестандартных. Найти вероятность того, что среди взятых на испытание 30 деталей две будут нестандартными.

Решение. Здесь опыт заключается в проверке каждой из 30 деталей на качество. Событие А - "появление нестандартной детали", его вероятность , тогда . Отсюда по формуле Бернулли находим

№8. При каждом отдельном выстреле из орудия вероятность поражения цели равна 0,9. Найти вероятность того, что из 20 выстрелов число удачных будет не менее 16 и не более 19.

Решение. Вычисляем по формуле Бернулли:

№9. Независимые испытания продолжаются до тех пор, пока событие А не произойдет k раз. Найти вероятность того, что потребуется n испытаний (n і k), если в каждом из них .

Решение. Событие В – ровно n испытаний до k -го появления события А – есть произведение двух следующий событий:

D – в n -ом испытании А произошло;

С – в первых (n –1) -ом испытаниях А появилось (к-1) раз.

Теорема умножения и формула Бернулли дают требуемую вероятность:

№10. Из n аккумуляторов за год хранения k выходит из строя. Наудачу выбирают m аккумуляторов. Определить вероятность того, что среди них l исправных. n = 100, k = 7, m = 5, l = 3.

Решение: Имеем схему Бернулли с параметрами p=7/100=0,07 (вероятность того, что аккумулятор выйдет из строя), n = 5 (число испытаний), k = 5-3 =2 (число "успехов", неисправных аккумуляторов). Будем использовать формулу Бернулли (вероятность того, что в n испытаниях событие произойдет k раз).

Получаем

№11. Устройство, состоящее из пяти независимо работающих элементов, включается за время Т. Вероятность отказа каждого из них за это время равна 0,2. Найти вероятность того, что откажут: а) три элемента; б) не менее четырех элементов; в) хотя бы один элемент.

Решение: Имеем схему Бернулли с параметрами p = 0,2 (вероятность того, что элемент откажет), n = 5 (число испытаний, то есть число элементов), k (число "успехов", отказавших элементов). Будем использовать формулу Бернулли (вероятность того, что для n элементов отказ произойдет в k элементах): . Получаем а) - вероятность того, что откажут ровно три элемента из пяти. б) - вероятность того, что откажут не менее четырех элементов из пяти (то есть или четыре, или пять). в) - вероятность того, что откажет хотя бы один элемент (нашли через вероятность противоположного события - ни один элемент не откажет).

№12. Сколько следует сыграть партий в шахматы с вероятностью победы в одной партии, равной 1/3, чтобы наивероятнейшее число побед было равно 5?

Решение: Наивероятнейшее число побед k определяется из формулы Здесь p =1/3 (вероятность победы), q = 2/3 (вероятность проигрыша), n - неизвестное число партий. Подставляя данные значения, получаем:

Получаем, что n = 15, 16 или 17.

3. Локальная формула Муавра-Лапласа

Легко видеть, что пользоваться формулой Бернулли при больших значениях n достаточно трудно, так как формула требует выполнения действий над громадными числами. Естественно, возникает вопрос: нельзя ли вычислить интересующую нас вероятность, не прибегая к формуле Бернулли.

В 1730 г. другой метод решения при p=1/2 нашел Муавр; в 1783 г. Лаплас обобщил формулу Муавра для произвольного p, отличного от 0 и 1.

Эта формула применяется при неограниченном возрастании числа испытаний, когда вероятность наступления события не слишком близка к нулю или единице. Поэтому теорему, о которой идет речь, называют теоремой Муавра-Лапласа.

Теорема Муавра-Лапласа. Если вероятность p появления события А в каждом испытании постоянна и отлична от нуля и единицы, то вероятность того, что событие А появится в n испытаниях ровно k раз, приближенно равна(тем точнее, чем больше n) значению функции

Имеются таблицы, в которых помещены значения функции

соответствующие положительным значениям аргумента x(см. приложение1). Для отрицательных значений аргумента пользуются теми же таблицами, так как функция четна, т.е. .

Итак, вероятность того, что событие A появится в n независимых испытаниях ровно k раз, приближенно равна


№13. Найти вероятность того, что событие А наступит ровно 80 раз в 400 испытаниях, если вероятность появления этого события в каждом испытании равна 0,2.

Решение. По условию n=400; k=80; p=0,2; q=0,8. Воспользуемся формулой Лапласа:

Искомая вероятность

№14. Вероятность поражения мишени стрелком при одном выстреле p=0,75.

Найти вероятность того, что при 10 выстрелах стрелок поразит мишень 8 раз.

Решение. По условию n=10; k=8; p=0,75; q=0,25.


Воспользуемся формулой Лапласа:

Вычислим определяемое данными задачи значение x:

По таблице приложения1 находим

Искомая вероятность

№15. Найти вероятность того, что событие А наступит ровно 70 раз в 243 испытаниях, если вероятность появления этого события в каждом испытании равна 0,25.

Решение. По условию n=243; k=70; p=0,25; q=0,75. Воспользуемся формулой Лапласа:

Найдем значение x:


По таблице приложения1 находим

Искомая вероятность

№16. Найти вероятность того, что событие А наступит 1400 раз в 2400 испытаниях, если вероятность появления этого события в каждом испытании равна 0,6.

Решение. По условию n=2400; k=1400; p=0,6; q=0,4. Как и в предыдущем примере, воспользуемся формулой Лапласа:

Вычислим x:

По таблице приложения1 находим


Искомая вероятность

4. Формула Пуассона

Эта формула применяется при неограниченном возрастании числа испытаний, когда вероятность наступления события достаточно близка к 0 или 1.

Доказательство.

Таким образом получили формулу:

Примеры

№17. Вероятность изготовления негодной детали равна 0,0002. Найти вероятность того, что среди 10000 деталей только 2 детали будут негодными.

Решение. n=10000; k=2; p=0,0002.

Искомая вероятность

.

№18. Вероятность изготовления бракованной детали равна 0,0004. Найти вероятность того, что среди 1000 деталей только 5 детали будут бракованными.

Решение. n=1000; k=5; p=0,0004.

Искомая вероятность

№19. Вероятность выигрыша лотереи равна 0,0001. Найти вероятность того, что из 5000 попыток выиграть удастся 3 раза.

Решение. n=5000; k=3; p=0,0001.

Искомая вероятность

.


5. Теорема Бернулли о частоте вероятности

Теорема. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна p, абсолютная величина отклонения относительной частоты появления события от вероятности появления события не превысит положительного числа , приближенно равна удвоенной функции Лапласа при :

Доказательство. Будем считать, что производится n независимых испытаний, в каждом из которых вероятность появления события А постоянна и равна p. Поставим перед собой задачу найти вероятность того, что отклонение относительной частоты от постоянной вероятности p по абсолютной величине не превышает заданного числа . Другими словами, найдем вероятность осуществления неравенства

Заменим неравенство (*) ему равносильными:


Умножая эти неравенства на положительный множитель , получим неравенства, равносильные исходному:

Тогда вероятность найдем следующим образом:

Значение функции находится по таблице(см. приложение2).

Примеры

№20. Вероятность того, что деталь не стандартна, p=0,1. Найти вероятность того, что среди случайно отобранных 400 деталей относительная частота появления нестандартных деталей отклонится от вероятности p=0,1 по абсолютной величине не более, чем на 0,03.

Решение. n=400; p=0,1; q=0,9; =0,03. Требуется найти вероятность. Пользуясь формулой


По таблице приложения2 находим . Следовательно, . Итак, искомая вероятность равна 0,9544.

№21. Вероятность того, что деталь не стандартна, p=0,1. Найти, сколько деталей надо отобрать, чтобы с вероятностью, равной 0,9544, можно было утверждать, что относительная частота появления нестандартных деталей(среди отобранных) отклонится от постоянной вероятности p по абсолютной величине не более чем на 0,03.

Решение. По условию, p=0,1; q=0,9; =0,03; . Требуется найти n. Воспользуемся формулой

В силу условия

Следовательно,

По таблице приложения 2 находим . Для отыскания числа n получаем уравнение . Отсюда искомое число деталей n=400.

№22. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти, какое отклонение относительной частоты появления события от его вероятности можно ожидать с вероятностью 0,9128 при 5000 испытаниях.

Решение. Воспользуемся той же формулой, из которой следует:


Литература

1. Гмурман Е.В. "Теория вероятностей и математическая статистика", Москва, "Высшая школа"2003.

2. Гмурман Е.В. "Руководство к решению задач по теории вероятностей и математической статистике", Москва "Высшая школа"2004.

3. Гнеденко Б.В. "Курс теории вероятностей", Москва, "Наука"1988.

4. Колемаев В.А., Калинина В.Н., Соловьев В.И., Малыхин В.И., Курочкин А.П. "Теория вероятностей в примерах и задачах", Москва, 2001.

5. Вентцель Е.С. "Теория вероятностей", Москва, "Высшая школа"1998.


Приложения

Приложение 1

Таблица значений функции

0 1 2 3 4 5 6 7 8 9
1.6 1109 1092 1074 1057 1040 1023 1006 0989 0973 0957
1.7 0940 0925 0909 0893 0878 0863 0648 0833 0818 0804
1.8 0790 0775 0761 0748 0734 0721 0707 0694 0681 0669
1.9 0656 0644 0632 0620 0608 0596 0584 0573 0562 0551
2,0 0540 0529 0519 0508 0498 0488 0478 0468 0459 0449
2.1 0440 0431 0422 0413 0404 0396 0387 0379 0371 0363
2.2 0355 0347 0339 0332 0325 0317 0310 0303 0297 0290
2.3 0283 0277 0270 0264 0258 0252 0246 0241 0235 0229
2,4 0224 0219 0213 0208 0203 0198 0194 0189 0184 0180
2.5 0175 0171 0167 0163 0158 0154 0151 0147 0143 0139
2.6 0136 0132 0129 0126 0122 0119 0116 0113 0110 0107
2,7 0104 0101 0099 0096 0093 0091 0088 0086 0084 0081
2,8 0079 0077 0075 0073 0071 0069 0067 0065 0063 0061
2.9 0060 0058 0056 0055 0053 0051 0050 0048 0047 0043
3,0 0044 0043 0042 0040 0039 0038 0037 0036 0035 0034
3,1 0033 0032 0031 0030 0029 0028. 0027 0026 0025 0025
3,2 0024 0023 0622 0022 0021 0020 0020 0019 0018 0018
3,3 0017 0017 0016 0016 0015 0015 0014 0014 0013 0013
3,4 0012 0012 0012 0011 0011 0010 0010 0010 0009 0009
3,5 0009 0008 0008 0008 0008 0007 0007 0007 0007 0006
3,6 0006 0006 0006 0005 0005 0005 0005 0005 0005 0004
3,7 0004 0004 0004 0004 0004 0004 0003 0003 0003 0003
3,8 0003 0003 0003 0003 0003 0002 0002 0002 0002 0002
3,9 0002 0002 0002 0002 0002 0002 0002 0002 0001 0001

Приложение 2

Таблица значений функции

x x x x
0,0000 0,32 0,1255 0,64 0,2389 0,96 0,3315
0,01 0,0040 0,33 0,1293 0,65 0,2422 0,97 0,3340
0,02 0,0080 0,34 0,1331 0,66 0,2454 0,98 0,3365
0,03 0,0120 0,35 0,1368 0,67 0,2486 0.99 0,3389
0,04 0,0160 0,36 0,1406 0,68 0,2517 1,00 0,3413
0,05 0,0199 0,37 0,1443 0,69 0,2549 1,01 0,3438
0,06 0,0239 0,38 0,1480 0,70 0,2580 1,02 0,3461
0,07 0,0279 0,39 0,1517 0,71 0,2611 1,03 0,3485
0,08 0,0319 0,40 0,1554 0,72 0,2642 1,04 0,3508
0,09 0,0359 0,41 0,1591 0,73 0,2673 1,05 0,3531
0,10 0,0398 0,42 0,1628 0,74 0,2703 1,06 0,3554
0,11 0,0438 0,43 0,1664 0,75 0,2734 1,07 0,3577
0,12 0,0478 0,44 0,1700 0,76 0,2764 1,08 0,3599
0,13 0,0517 0,45 0,1736 0,77 0,2794 1.09 0,3621
0,14 0,0557 0,46 0,1772 0,78 0,2823 1.10 0,3643
0,15 0,0596 0,47 0,1808 0,79 0,2852 3665 0,3665
0,16 0,0636 0,48 0,1844 0,80 0,2881 3686 0,3686
0,17 0,0675 0,49 01879 0,81 0,2910 1,13 0,3708.
0,18 0,0714 0,50 0,1915 0,82 0,2939 1,14 0,3729
0,19 0,0753 0,51 0,1950 0,83 0,2967 1,15 0,3749
0,20 0,0793 0,52 0,1985 0,84 0,2995 1,16 0,3770
0,21 0,0832 0,53 0,2019 0,85 0,3023 1,17 0,3790
0,22 0,0871 0,54 0,2054 0,86 0,3051 1,18 0,3810
0,23 0,0910 0,55 0,2088 0,87 0,3078 1,19 0,3830
0,24 0,0948 0,56 0,2123 0,88 0,3106 1,20 0,3849
0,25 0,0987 0,57 0,2157 0,89 0,3133 1.21 0,3869
0,26 0,1026 0,58 0,2190 0,90 0,3159 1,22 0/3883
0,27 0,1064 0,59 0,2224 0,91 0,3186 1,23 0,3907
0,28 0,1103 0,60 0,2257 0,92 0,3212 1.24 0,3925
0,29 0,1141 0,61 0,2291 0,93 0,3238 1,25 0,3944
0,30 0,1179 0,62 0,2324 0,94 0,3264
0,31 0,1217 0,63 0,2357 0,95 0,3289

x x x x
1,26 0,3962 1,59 0,4441 1,92 0,4726 2,50 0,4938
1,27 0,3980 1,60 0,4452 1,93 0,4732 2,52 0,4941
1,28 0,3997 1,61 0,4463 1,94 0,4738 2,54 0,4945
1,29 0.4015 1,62 0,4474 1,95 0,4744 2,56 0,4948
1,30 0,4032 1,63 0.4484 1.96 0,4750 2,58 0,4951
1,31 0,4049 1,64 0,4495 1,97 0,4756 2,60 0,4953
1,32 0.4066 1,65 0,4505 1,98 0,4761 2,62 0,4956
1,33 0,4082 1,66 0,4515 1,99 0,4767 2,64 0,4959
1,34 0.4099 1,67 0.4525 2.00 0,4772 2,66 0,4961
1.3S 0.4115 1,68 0,4535 2,02 0,4783 2,68 0,4963
1,36 0.4131 1,69 0,4545 2,04 0,4793 2,70 0,4965
1,37 0.4147 1,70 0,4554 2,06 0,4803 2,72 0,4967
1,38 0.4162 1.71 0,4564 2,08 0,4812 2,74 0,4969
1,39 0.4177 1,72 0,4573 2,10 0,4821 2,76 0,4971
1.40 0,4192 1,73 0,4582 2,12 0,4830 2,78 0,4973
1.41 0,4207 1.74 0,4591 2,14 0,4838 2,80 0,4974
1.42 0.4222 1,75 0.4599 2,16 0,4846 2,82 0,4976
1.43 0.4236 1,76 0,4608 2,18 0,4854 2,84 0,4977
1.44 0,4251 1.77 0,4616 2,20 0,4861 2,86 0,4979
1,45 0.4265 1,78 0.4625 2,22 0,4868 2,88 0,4980
1.46 0,4279 1,79 0,4633 2,24 0,4875 2,90 0,4981
1.47 0,4292 1,80 0,4641 2,26 0,4881 2,92 0,4982
1,48 0,4306 1.81 0,4649 2,28 0,4887 2,94 0,4984
1,49 0.4319 1,82 0,4656 2,30 0,4893 2,96 0,4985
1.50 0,4332 1,83 0,4664 2,32 0,4898 2.98 0,4986
1,51 0,4345 1,84 0,4671 2,34 0,4904 3,00 0,49865
1.52 0,4357 1,85 0,4678 2,36 0,4909 3,20 0,49931
1.53 0,4370 1,86 0,4686 2,38 0,4913 3.40 0,49966
1.54 0,4382 1,87 0,4693 2,40 0,4918 3,60 0,49984
1,55 0,4394 1.88 0,4699 2,42 0,4922 3,80 0,49992
1.S6 0,4406 1.89 0,4706 2,44 0,4927 4,00 0,49996
1,57 0,4418 1,90 0,4713 2,46 0,4931 4,50 0,49999
1,58 0,4429 1,91 0,4719 2,48 0,4934 5,00 0,49999

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

«МАТИ»  РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. К.Э. ЦИОЛКОВСКОГО

Кафедра «Моделирование систем и информационные технологии»

Повторение испытаний. Схема бернулли

Методические указания к практическим занятиям

по дисциплине «Высшая математика»

Составители: Егорова Ю.Б.

Мамонов И.М.

Москва 2006 введение

Методические указания предназначены для студентов дневного и вечернего отделения факультета №14 специальностей 150601, 160301, 230102. Указания выделяют основные понятия темы, определяют последовательность изучения материала. Большое количество рассмотренных примеров помогает в практическом освоении темы. Методические указания служат методической основой для практических занятий и выполнения индивидуальных заданий.

    СХЕМА БЕРНУЛЛИ. ФОРМУЛА БЕРНУЛЛИ

Схема Бернулли - схема повторных независимых испытаний, при которой какое-то событие А может многократно повторяться с постоянной вероятностью Р (А )= р .

Примеры испытаний, проводимых по схеме Бернулли: многократное подбрасывание монеты или игральной кости, изготовление партии деталей, стрельба по мишени и т.п.

Теорема. Если вероятность наступления события А в каждом испытании постоянна и равна р , то вероятность того, что событие А наступит m раз в n испытаниях (безразлично в какой последовательности), можно определить по формуле Бернулли:

где q = 1 – p .

ПРИМЕР 1. Вероятность того, что расход электроэнергии на протяжении одних суток не превысит установленной нормы, равна р= 0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.

РЕШЕНИЕ. Вероятность нормального расхода элек­троэнергии на протяжении каждых из 6 суток постоянна и равна р = 0,75. Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна q = 1р = 1  0,75 = 0,25.

Искомая вероятность по формуле Бернулли равна:

ПРИМЕР 2. Стрелок производит по мишени три выстрела. Вероятность попадания в мишень при каждом выстреле равна р= 0,3. Найти вероятность того, что поражена: а) одна мишень; б) все три мишени; в) ни одной мишени; г) хотя бы одна мишень; д) менее двух мишеней.

РЕШЕНИЕ. Вероятность попадания в мишень при каждом выстреле постоянна и равна р =0,75. Следовательно, вероятность промаха равна q = 1 р = 1  0,3= 0,7. Общее число проведенных опытов n =3.

а) Вероятность поражения одной мишени при трех выстрелах равна:

б) Вероятность поражения всех трех мишеней при трех выстрелах равна:

в) Вероятность трех промахов при трех выстрелах равна:

г) Вероятность поражения хотя бы одной мишени при трех выстрелах равна:

д) Вероятность поражения менее двух мишеней, то есть или одной мишени, или ни одной:

  1. Локальная и интегральная теоремы муавра-лапласа

Если произведено большое число испытаний, то вычисление вероятностей по формуле Бернулли становится технически сложным, так как формула требует действий над огромными числами. Поэтому существуют более простые приближенные формулы для вычисления вероятностей при больших n . Эти формулы называются асимптотическими и определяются теоремой Пуассона, локальной и интегральной теоремой Лапласа.

Локальная теорема Муавра-Лапласа. А А произойдет m раз в n n (n →∞ ), приближенно равна:

где функция
а аргумент

Чем больше n , тем точнее вычисление вероятностей. Поэтому теорему Муавра-Лапласа целесообразно применять при npq 20.

f ( x ) составлены специальные таблицы (см. приложение 1). При использовании таблицы необходимо иметь в виду свойства функции f(x) :

    Функция f(x) является четной f( x)= f(x) .

    При х  ∞ функция f(x)  0. Практически можно считать, что уже при х >4 функция f(x) ≈0.

ПРИМЕР 3. Найти вероятность того, что событие А наступит 80 раз в 400 испытаниях, если вероятность появления события А в каждом испытании равна р= 0,2.

РЕШЕНИЕ. По условию n =400, m =80, p =0,2, q =0,8. Следовательно:

По таблице определим значение функции f (0)=0,3989.

Интегральная теорема Муавра-Лапласа. Если вероятность наступления события А в каждом испытании постоянна и отлична от 0 и 1, то вероятность того, что событие А произойдет от m 1 до m 2 раз в n испытаниях при достаточно большом числе n (n →∞ ), приближенно равна:

где
 интеграл или функция Лапласа,

Для нахождения значений функции Ф( x ) составлены специальные таблицы (например, см. приложение 2). При использовании таблицы необходимо иметь в виду свойства функции Лапласа Ф(x) :

    Функция Ф(x) является нечетной Ф( x)= Ф(x) .

    При х  ∞ функция Ф(x)  0,5. Практически можно считать, что уже при х >5 функция Ф(x) ≈0,5.

    Ф (0)=0.

ПРИМЕР 4. Вероятность того, что деталь не прошла проверку ОТК, равна 0,2. Найти вероятность того, что среди 400 деталей окажется непроверенных от 70 до 100 деталей.

РЕШЕНИЕ. По условию n =400, m 1 =70, m 2 =100, p =0,2, q =0,8. Следовательно:


По таблице, в которой приведены значения функции Лапласа, определяем:

Ф(x 1 ) = Ф(  1,25 )= Ф( 1,25 )=  0,3944; Ф(x 2 ) = Ф( 2,5 )= 0,4938.

Слайд 1

Теорема Бернулли
17.03.2017

Слайд 2

Производится серия n независимых испытаний. У каждого испытания 2 исхода: A - "успех" и - "неуспех". Вероятность "успеха" в каждом испытании одинакова и равна P(A) = p Соответственно, вероятность "неуспеха" также не меняется от опыта к опыту и равна.
Схема Бернулли
Какова вероятность того, что в серии из n опытов k раз наступит успех? Найти Pn(k) .

Слайд 3

Монета бросается n раз. Из колоды извлекается карта n раз, причём каждый раз карта возвращается, колода перемешивается. Исследуется n изделий некоторого производства, наугад выбранные, на качество. Стрелок стреляет по мишени n раз.
Примеры

Слайд 4

Объясните, почему следующие вопросы укладываются в схему Бернулли. Укажите, в чем состоит «успех» и чему равны n и k. а) Какова вероятность трехкратного выпадения «двойки» при десяти бросаниях игрального кубика? б) Какова вероятность того, что при ста бросаниях монеты «орел» появится 73 раза? в) Двадцать раз подряд бросили пару игральных кубиков. Какова вероятность того, что сумма очков ни разу не была равна десяти? г) Из колоды в 36 карт вытащили три карты, записали результат и возвратили их в колоду, затем карты перемешали. Так повторялось 4 раза. Какова вероятность того, что каждый раз среди вытащенных карт была дама пик?.

Слайд 5

Для числа сочетаний из n по k справедлива формула
Например:

Слайд 6

Теорема Бернулли
Вероятность Pn(k) наступления ровно k успехов в n независимых повторениях одного и того же испытания находится по формуле, где p – вероятность «успеха», q = 1- p - вероятность «неудачи» в отдельном опыте.

Слайд 7

Монета бросается 6 раз. Какова вероятность выпадения герба 0, 1, …6 раз? Решение. Число опытов n=6. Событие А – «успех» – выпадение герба. По формуле Бернулли требуемая вероятность равна
;
;
;
;
;
;

Слайд 8

Монета бросается 6 раз. Какова вероятность выпадения герба 0, 1, …6 раз? Решение. Число опытов n=6. Событие А – «успех» – выпадение герба.
;
;
;
;
;
;

Слайд 9

Монета бросается 10 раз. Какова вероятность двукратного появления герба? Решение. Число опытов n=10, m=2. Событие А – «успех» – выпадение герба. По формуле Бернулли требуемая вероятность равна
;
;
;
;
;
;

Слайд 10

В урне 20 белых и 10 черных шаров. Вынули 4 шара, причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых. Решение. Событие А – достали белый шар. Тогда вероятности По формуле Бернулли требуемая вероятность равна

Слайд 11

Определить вероятность того, что в семье, имеющей 5 детей, нет девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми. Решение. Вероятность рождения девочки, мальчика По формуле Бернулли требуемая вероятность равна

Слайд 12

Определить вероятность того, что в семье, имеющей 5 детей, будет одна девочка. Вероятности рождения мальчика и девочки предполагаются одинаковыми. Решение. Вероятность рождения девочки, мальчика По формуле Бернулли требуемая вероятность равна

Слайд 13

Определить вероятность того, что в семье, имеющей 5 детей, будет две девочки. Решение. Вероятность рождения девочки, мальчика По формуле Бернулли требуемая вероятность равна

Слайд 14

Определить вероятность того, что в семье, имеющей 5 детей, будет три девочки. Решение. Вероятность рождения девочки, мальчика По формуле Бернулли требуемая вероятность равна

Слайд 15

Определить вероятность того, что в семье, имеющей 5 детей, будет не больше трёх девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми. Решение. Вероятность рождения девочки, мальчика Требуемая вероятность равна
.

Слайд 16

Среди деталей, обрабатываемых рабочим, бывает в среднем 4% нестандартных. Найти вероятность того, что среди взятых на испытание 30 деталей две будут нестандартными. Решение. Здесь опыт заключается в проверке каждой из 30 деталей на качество. Событие А - «появление нестандартной детали»,

В продолжение темы:
Аксессуары

Москва. 21 июня. сайт - Госдума на заседании во вторник приняла в третьем чтении закон, который устанавливает правила взаимодействия коллекторов с должниками. Закон...

Новые статьи
/
Популярные